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Abstract
We perform a global analysis of curved Friedmann–Robertson–Walker 
cosmologies in the presence of a viscous fluid. The fluid’s bulk viscosity is 
governed by a first order theory recently proposed in Disconzi et  al (2015 
Phys. Rev. D 91 043532), and the analysis is carried out in a compactified 
parameter space with dimensionless coordinates. We provide stability 
properties, cosmological interpretation and thermodynamic features of the 
critical points.
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1.  Introduction

Most studies in cosmology are based on the assumption that the matter content of the Universe 
is well approximated by a perfect fluid description, i.e. one without viscosity nor heat conduc-
tion. However there are stages in the evolution of the universe when viscosity and entropy-
producing processes are expected to be important, especially during the early Universe: the 
reheating at the end of inflation, the decoupling of neutrinos from the primordial plasma, the 
nucleosynthesis and the decoupling of photons from matter during the recombination era. At 
the same time, the analysis of data from the recent Planck survey [1] confirms a background 
geometry which, at very large scales, is isotropic and homogeneous (see also [2] for an inde-
pendent analysis on the same dataset). While shear viscosity and heat fluxes are related to the 
presence of anisotropies and inhomogeneities, bulk viscosity is related just to the kinematical 
expansion of the fluid’s flow: the observational evidence hence justifies the choice of consid-
ering the cosmological effect of bulk viscosity alone among the possible dissipative processes, 
as long as the description is restricted to very large scales.
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The role of bulk viscosity in cosmology has been explored from many points of view. It has 
been proposed long ago as a way to avoid the initial Big Bang singularity [3] and to obtain a 
better understanding of the singularity itself [4]. As a phenomenological model of dissipative 
processes, bulk viscosity should describe the effect of isotropic expansion on the thermody-
namic properties of fluids: for instance, one could interpret the dissipation as the result of a 
friction between different matter species undergoing a common Hubble expansion. At the 
same time, bulk viscosity can provide a phenomenological description of particle creation in 
strong gravitational fields [5]. One of the main features of viscosity is the possibility to lower 
the total effective pressure of the fluid to negative values: given that the Universe is currently 
undergoing accelerated expansion, and given that such effect in GR can be obtained by a suf-
ficiently negative pressure of the matter source, bulk viscous fluids have been proposed as 
possible candidates for dark energy. In this respect, it is worth mentioning that the traditional 
first-order model of bulk viscosity due to Eckart [6] is formally equivalent to a generalized 
Chaplygin gas for some ranges of the free parameters involved. Apart from cosmology, bulk 
viscosity could play a substantial role as well in astrophysical scenarios, such as in the growth 
of inhomogeneities that seed large-scale structures [7, 8] and in the gravitational collapse of 
compact objects [9, 10]. However, in these cases the other dissipative processes are expected 
to contribute as well.

The formulation of a relativistic theory of dissipative processes dates back to the stud-
ies of Eckart [6], who introduced viscous contributions to the stress–energy tensor as func-
tions of the four-velocity and the thermodynamical variables of the fluid. In [11] Hiscock 
and Lindblom provided general arguments showing that a wide class of first-order theories 
are unstable: Eckart’s approach, which considers first-order deviations from thermodynamic 
equilibrium, falls into such a class, and hence presents several shortcomings in terms of stabil-
ity and physical viability. The most evident of such problems is the superluminal propagation 
of signals. In order to address the ensuing issue of causality, Mueller, Israel and Stewart [12, 
13] considered a formulation based on second-order deviations from equilibrium, in which the 
dissipative variables are treated as independent quantities satisfying their own evolution equa-
tions. During the 1980s, the formulation of such extended irreversible thermodynamics has 
been deeply refined [14, 15] and several applications in cosmology have been presented [16, 
17]. However, it has been argued [18] that the MIS theory is not uniquely defined, as the equa-
tions of motion that such variables satisfy rely on a certain degree of arbitrariness, and that its 
causal character is not yet fully understood. Nonetheless, both Eckart’s and MIS approaches 
(including possible modifications, e.g. [19]) have been applied extensively to cosmology and 
their impact on the accelerated expansion of universe [20–25] and on the formation of struc-
tures [7, 26] has been analysed.

We consider here a recent first-order fomulation of relativistic dissipative processes [27], 
based on a previous approach due to Lichnerowicz [28] and which does not introduce new, 
independent variables for the viscous quantities. Although first-order in nature, such an 
approach does not fall into the class of theories that were proven unstable by Hiscock and 
Lindblom. We present the basic structure of the theory in section 2, specializing to a curved 
Friedmann–Robertson–Walker (FRW) background metric and considering a single viscous 
fluid. In section 3 we recast the equations in the form of an autonomous dynamical system 
and analyse the general features of its critical elements from the cosmological point of view. 
In section 4, we further specialize to the case of viscous radiation and show the behaviour of 
the trajectories in the compactified parameter space. Finally, in section 5 we discuss and com-
ment on the results.
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2.  Equations

The viscous energy–momentum tensor proposed in [18] has the form

Tµν = ρ uµuν +
(

p − ζ∇αCα
)
(gµν + uµuν) ,� (2.1)

where ρ and p are, respectively, the energy density and equilibrium pressure of the fluid. The 
equilibrium pressure is modified by the bulk viscous term, where ζ � 0 is the bulk viscosity, 
Cα := F uα is the dynamical velocity (or canonical momentum) of a fluid element and F is 
the specific enthalpy of the fluid,

F =
ρ+ p
µ

,� (2.2)

with μ its rest mass density. The adoption of the dissipative source in the form of equation (2.1) 
can be supported by the natural requirement that all the information about the properties of 
matter should be conveyed only by the structure of the energy–momentum tensor, without the 
need of introducing additional assumption on the dynamics of the variables involved—which 
is instead the case in MIS formulation. The dynamical velocity Cα appearing in the energy–
momentum tensor has been considered as a suitable relativistic generalization of the concept 
of fluid’s velocity in presence of dissipation (see [18] for a discussion). It is worth noticing 
that Cα plays the role of canonical momentum in a Hamiltonian formulation of relativistic 
nonisentropic flows [29]. The bulk viscosity of the fluid is measured by ∇αCα, that is the 
kinematical the expansion of such vector field; the definition is compatible with the notion 
that bulk viscosity vanishes for an incompressible fluid, for which ∇αCα = 0. A more general 
dissipative source would include also shear viscosity in terms of the spatial projection of the 
symmetrized quantity ∇(αCβ): however, in an isotropic background such contribution plays 
no role and for the purpose of the present analysis we will discard it. In a FRW background 
we have

∇αCα = Ḟ + 3 H F ,� (2.3)

where the dot is the derivative with respect to cosmic time. Moreover, the rest mass is con-
served along the flow lines ∇α (µuα) = 0, so that µ = µ0 a−3. The field and continuity equa-
tions obtained with the viscous energy–momentum tensor (2.1) are the following:

H2 +
k
a2 =

1
3
ρ ,� (2.4)

2 Ḣ + 3 H2 +
k
a2 = −ω ρ+ ζ∇αCα ,� (2.5)

ρ̇+ 3H (1 + ω) ρ− 3 H ζ∇αCα = 0 ,� (2.6)

where we have already implemented the barotropic equation of state p = ω ρ for the equilib-
rium pressure. Moreover, it is usual to assume a generic power-law dependence of the bulk 
viscosity on the energy density of the fluid:

ζ = ζ0 ρ
α with ζ0 � 0 .� (2.7)

Note that, in an expanding universe (H  >  0), positivity of entropy production is related to 
positivity of equation (2.3), because [18]

T ∇βSβ = 3ζ H ∇αCα ,� (2.8)
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where T  >  0 is the temperature of the fluid. This will be relevant for determining the portion 
of the parameter space where entropy production is non-negative.

3.  Dynamical system

Dealing with a curved FRW background, we know that positive spatial curvature can lead to 
bouncing/recollapsing scenarios, whereas a negative or vanishing curvature is either always 
expanding or always collapsing. The usual definition of expansion-normalized variables 
breaks down in the former case whenever H  =  0 at finite times. For this reason we divide the 
analysis in two parts, the k � 0 case and the k  >  0 case, as they require different definitions of 
dimensionless variables. During the whole section, however, we keep a general EoS parameter 
ω ∈ (−1, 1) and we will specialize to viscous radiation ω = 1/3 only in section 4.

3.1.  Non-positive spatial curvature

Imposing k � 0 means that the term k/a2 in the field equations is non-positive. Hence we can 
safely define the new variables in the following way:

Ωρ =
ρ

3 H2 ,� (3.9)

Ωk =
|k|

3 H2 a2 ,� (3.10)

ΩC =
ζ∇αCα

ρ
.� (3.11)

In terms of such variables, the Friedmann and Raychaudhuri equations respectively take the 
form

1 = Ωρ +Ωk ,� (3.12)

Ḣ
H2 =

3
2
Ωρ

[
ΩC − (1 + ω)

]
.� (3.13)

The first equation is a constraint that allows us to disregard the evolution of, e.g. Ωk. Such 
a constraint tells us that Ωρ ∈ [0, 1]. The variable ΩC  instead is unbounded both from above 
and from below, which means that some trajectories of the system might escape to infinity: in 
order to capture such asymptotic behaviour, we define the new variable X = arctanΩC , such 
that X ∈ [π/2,π/2]. We define as well the new evolution parameter τ = log a(t). The deriva-
tive with respect to τ will be denoted by a prime and its relation with the cosmic time deriva-
tive is such that X′ = H−1Ẋ. Taking the prime derivative of the definitions of the relevant 
variables Ωρ and X, and making use of equations (2.6) and (3.13), we arrive at the following 
autonomous system:

Ω′
ρ = −3Ωρ (1 − Ωρ)

[
(1 + ω)− tanX

]
,� (3.14)

X′ = − 3
2(1 − ω)

cosX sinX
(

1 − ω + tanX
)[

(2α+Ωρ) (1 + ω − tanX)− 2
]

.� (3.15)

The entropy production is related to the compact variables by

G Acquaviva and A Beesham﻿Class. Quantum Grav. 35 (2018) 195011
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T ∇βSβ = 9 H3 Ωρ tanX .� (3.16)

This means that for expanding models (H  >  0), the trajectories in the portion of the param
eter space given by X ∈ (0,π/2) correspond to dynamics with positive entropy production; 
conversely, in collapsing models (H  <  0), trajectories with positive entropy production have 
X ∈ (−π/2, 0). The dividing trajectory X  =  0 is an invariant subset of the system, so we 
cannot expect positive entropy-producing initial conditions to evolve into negative entropy-
producing states.

The critical points P = {X∗,Ω∗
ρ} of the system are easily found by solving the system

X′ (X∗,Ω∗
ρ

)
= 0� (3.17)

Ω′
ρ

(
X∗,Ω∗

ρ

)
= 0 ,� (3.18)

and they are given by

P0 = {0 , 0} , P1 = {0 , 1}
P2 = {− arctan(1 − ω) , 0} , P3 = {− arctan(1 − ω) , 1}

P4 = {arctan(1 + ω − 1/α) , 0} , P5 = {arctan(1 + ω − 2/(1 + 2α)) , 1} .

For purposes of clarity, their stability properties for the case of expanding models (H  >  0) 
are listed in table 1 for −1 < ω < 0 and in table 2 for 0 < ω < 1. The case of collapsing mod-
els can be obtained by swapping the roles of sinks and sources. The deceleration parameter q 
and the effective EoS parameter ωE are given by

q ≡ −1 − Ḣ
H2 =

3
2
Ωρ

[
(1 + ω)− tanX

]
− 1 ,� (3.19)

ωE ≡ p − ζ∇αCα

ρ
= ω − tanX ,� (3.20)

while the scale factor evolution can be obtained by integrating equation (3.13) in the critical 
points.

Points P0, P2 and P4 are vacuum models with exponential expansion of the scale factor 
(q  =  −1) and they can act either as transients or as future attractors in expanding situations. 
The point P1 is an inviscid fluid solution with ωE = ω and q = (1 + 3ω)/2 and it can be either 
a transient saddle or a past attractor. The point P3 is a stiff matter model with q  =  2 and ωE = 1, 
with possible character of future attractor. Finally, point P5 has an effective equation of state 

Table 1.  Stability of the critical points of the system with k � 0 and −1 < ω < 0.

P0 P1 P2 P3 P4 P5

α < −1/2 Saddle Source Sink Saddle Saddle Sink

−1/2 < α < 0 Saddle Source Sink Saddle Saddle Source

0 < α < 1
2

Saddle Source Sink Source Saddle Saddle
1
2 < α < 1−ω

2(1+ω)
Saddle Source Saddle Source Sink Saddle

1−ω
2(1+ω) < α < 1

1+ω
Saddle Saddle Saddle Source Sink Source

α > 1
1+ω

Sink Saddle Saddle Source Saddle Source

G Acquaviva and A Beesham﻿Class. Quantum Grav. 35 (2018) 195011
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which depends explicitly on the viscosity parameter as ωE = 1−2α
1+2α ; it can represent a phantom 

model when α < −1/2, in which case is a future attractor for the system.

3.2.  Positive spatial curvature

If k  >  0 then one is faced with the possibility of bouncing or recollapsing models, in which 
cases the dimensionless variables defined in the previous section are ill-defined in the turning 
points of the scale factor, i.e. when H  =  0. However the quantity

D =

√
H2 +

k
a2

� (3.21)

is always positive definite, so we can define the following normalized variables:

ΩH =
H
D

,� (3.22)

Ωρ =
ρ

3 D2 ,� (3.23)

ΩC =
ζ∇αCα

3 H D
.� (3.24)

Again we define the compactified variable X = arctanΩC , so that the Friedmann constraint 
and Raychaudhuri equation read

Ωρ = 1 ,� (3.25)

Ḣ
H2 = − 1

2Ω2
H

[
1 + 2Ω2

H + 3 (ω − ΩH tanX)
]

.� (3.26)

We see immediately that Ωρ is not a dynamical degree of freedom. The variable ΩH is defined 
in the interval [−1, 1] and its sign is positive/negative iff the metric is expanding/contracting; 
the boundary values ΩH = ±1 represent the expanding/contracting spatially flat cases. An 
additional useful equation is given by the evolution of D:

Ḋ
D2 = −3

2
ΩH

[
1 + ω − ΩH tanX

]
.� (3.27)

Analogously to the previous case, we define the new time derivative X′ = D−1Ẋ , so that the 
prime derivatives of the dynamical variables give us the following system:

Table 2.  Stability of the critical points of the system with k � 0 and 0 < ω < 1.

P0 P1 P2 P3 P4 P5

α < −1/2 Saddle Source Sink Saddle Saddle Sink

−1/2 < α < 0 Saddle Source Sink Saddle Saddle Source

0 < α < 1−ω
2(1+ω)

Saddle Source Sink Source Saddle Saddle
1−ω

2(1+ω) < α < 1
2

Saddle Saddle Sink Source Saddle Source
1
2 < α < 1

1+ω
Saddle Saddle Saddle Source Sink Source

α > 1
1+ω

Sink Saddle Saddle Source Saddle Source

G Acquaviva and A Beesham﻿Class. Quantum Grav. 35 (2018) 195011
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Ω′
H = −1

2
(
1 − Ω2

H

) [
1 + 3 (ω − ΩH tanX)

]
,� (3.28)

X′ = − sinX
2 (1 − ω)

[
3 (1 − ω) (ω + 2α(1 + ω)− 1) ΩH cosX� (3.29)

+ sinX
(

1 + 3ω +Ω2
H (3 (1 + 4α)ω − 7)− 3ΩH tanX

(
1 + 2αΩ2

H

) )]
.

�

(3.30)

In this case, the entropy production is given by

T ∇αSα = 9 H3 tanX
ΩH

.� (3.31)

Hence, in the parameter space spanned by (X,ΩH), entropy production is positive iff 
X ∈ (0,π/2). Also in this case the subspace X  =  0 is an invariant subset of the system, so 
trajectories starting with positive entropy production cannot cross to the negative entropy 
production part.

The critical points are calculated as before and they are given by

Q+
0 = {0 , 1} , Q−

0 = {0 , −1}
Q+

1 = {− arctan(1 − ω) , 1} , Q−
1 = {− arctan(1 − ω) , −1}

Q+
2 = {arctan(1 + ω − 1/α) , 1} , Q−

2 = {arctan(1 + ω − 2/(1 + 2α)) , −1} .

Again, in order to present the results in a clear way, we separate the cases when −1 < ω < −1/3 
and when −1/3 < ω < 1, which are shown respectively in tables 3 and 4. The cosmological 
parameters that characterize the critical points in this case are

q =
1
2

1 + 3 (ω − ΩH tanX)
Ω2

H
,� (3.32)

ωE = ω − ΩH tanX .� (3.33)

The critical points Q±
0  represent inviscid fluid models with ωE = ω. Points Q±

1  are stiff matter 
solutions with ωE = 1. Points Q±

2  have ωE = 1−2α
1+2α  and q = 2(1−α)

1+2α , so that they can represent 

phantom models for α < −1/2.

Table 3.  Stability of the finite critical points of the system with k  >  0 and 
−1 < ω < −1/3.

Q+
0 Q−

0 Q+
1 Q−

1 Q+
2 Q−

2

α < −1/2 Saddle Saddle Saddle Saddle Sink Source

−1/2 < α < 0 Saddle Saddle Saddle Saddle Source Sink
0 < α < 1 Saddle Saddle Source Sink Saddle Saddle

1 < α < 1
2

1−ω
1+ω

Saddle Saddle Source Sink Sink Source

α > 1
2

1−ω
1+ω

{
Sink X → 0−

Saddle X → 0+

{
Saddle X → 0−

Source X → 0+
Source Sink Saddle Saddle

G Acquaviva and A Beesham﻿Class. Quantum Grav. 35 (2018) 195011
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4.  Viscous radiation

In order to visualize a physically meaningful case, we now specialize the analysis to the case 
of viscous radiation (ω = 1/3). We plot the trajectories in the compactified parameter space 
in figures 1 and 2 for k � 0, and in figures 3 and 4 for k  >  0. We choose representative values 
of the parameter α corresponding to the ranges specified in the tables of stability given in the 
previous section. The dots in the plots identify sinks (green), saddles (blue) and sources (red). 
The green shaded region in the plots corresponds to positivity of entropy production, accord-
ing to equtions (3.16) and (3.31).

We stress that in the case k � 0 we have plotted only the expanding (H  >  0) portion of the 
system: the collapsing part can be obtained by inverting the direction of the flows; moreover, 
in this case the positive entropy production regions will be X  <  0. As noted before, X  =  0 is 
an invariant subset, so the sign of entropy production is preserved during the dynamics. The 
same happens in the k  >  0 case: during the dynamics the sign of entropy production is also 
preserved.

The behaviour of the system at infinity is now encoded in the boundaries X = ±π/2, 
identified in the figures by a dashed line. In both curvature cases, the trajectories reach such 
boundaries with a specific constant values of the bounded coordinate (Ωρ for k � 0 and ΩH 
for k  >  0), the value of which depends on the initial conditions of the dynamics. In the non-
positive curvature case, focusing on the expanding sector (figures 1 and 2), an asymptotic 
constant value Ω0

ρ ∈ (0, 1) on the boundary allows us to calculate the scale factor by integrat-
ing the Friedmann constraint:

a(t) =

√
|k|

3
(
1 − Ω0

ρ

) (t − tBC) .� (4.34)

This corresponds to an asymptotically Milne-like model, with Big Bang time 

tBC = −a0

√
3
(
1 − Ω0

ρ

)
/|k| and a0 = a (t = 0). Consequently, the Hubble expansion and 

the energy density scale like

H =

√
|k|

3
(
1 − Ω0

ρ

) a−1 ,� (4.35)

ρ =
|k|Ω0

ρ

1 − Ω0
ρ

a−2 .� (4.36)

By considering a usual functional dependence of the temperature of the fluid on its energy 
density, i.e. T = T0 ρ

ω/(1+ω) with ω = 1/3, eventually one can evaluate the scaling of the 
entropy production in such asymptotic states:

Table 4.  Stability of the finite critical points of the system with k  >  0 and −1/3 < ω < 1.

Q+
0 Q−

0 Q+
1 Q−

1 Q+
2 Q−

2

α < −1/2 Source Sink Saddle Saddle Sink Source

−1/2 < α < 0 Source Sink Saddle Saddle Source Sink

0 < α < 1
2

1−ω
1+ω

Source Sink Source Sink Saddle Saddle
1
2

1−ω
1+ω < α < 1 Saddle Saddle Source Sink Source Sink

α > 1 Saddle Saddle Source Sink Saddle Saddle

G Acquaviva and A Beesham﻿Class. Quantum Grav. 35 (2018) 195011
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∇aSa = c± · a−2(α+1/4) ,� (4.37)

where c+ (resp. c−) is a positive (resp. negative) constant on the boundary XC = π/2 (resp. 
XC = −π/2). For instance, in the positive entropy production part of the dynamics one has

	 •	�if α+ 1/4 > 0:

	 –	�∇aSa → 0 for a → ∞ (stable boundary)

Figure 1.  Trajectories in the parameter space for the system with k � 0, ω = 1/3 and 
expanding dynamics (H  >  0). From the top: α = −1, α = −1/4, α = 1/10. Dots 
identify sources (red), saddles (blue) and sinks (green). The green shaded area is the 
positive entropy production region. The dashed line is the compactified boundary of 
the system.

G Acquaviva and A Beesham﻿Class. Quantum Grav. 35 (2018) 195011
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	 –	�∇aSa → ∞ for a → 0 (unstable boundary)

	 •	�if α+ 1/4 < 0:
	 –	�∇aSa → ∞ for a → ∞ (stable boundary)
	 –	�∇aSa → 0 for a → 0 (unstable boundary)

Figure 2.  Trajectories in the parameter space for the system with k � 0, ω = 1/3 and 
expanding dynamics (H  >  0). From the top: α = 1/3, α = 2/3, α = 2. Dots identify 
sources (red), saddles (blue) and sinks (green). The green shaded area is the positive 
entropy production region. The dashed line is the compactified boundary of the system.

G Acquaviva and A Beesham﻿Class. Quantum Grav. 35 (2018) 195011
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An analogous analysis applies in the case k  >  0, where a constant value Ω0
H on the com-

pactified boundaries allows to calculate the scale factor by integrating the definition of the 
variable itself:

a(t) =





√
k (Ω0

H)
2

1−(Ω0
H)

2 (t − tBC) , for Ω0
H > 0

√
k (Ω0

H)
2

1−(Ω0
H)

2 (tBC − t) , for Ω0
H < 0 ,

Figure 3.  Trajectories in the parameter space for the system with k  >  0 and ω = 1/3. 
From top left: α = −1, α = −1/4, α = 1/10. Dots identify sources (red), saddles (blue) 
and sinks (green). The green shaded area is the positive entropy production region. The 
dashed line is the compactified boundary of the system.
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where tBC and tBC are the Big Bang and the Big Crunch times respectively. Having the same 
asymptotic time-dependence of the scale factor as in the previous case, also the scaling prop-
erties of the entropy production are analogous.

5.  Conclusions

In the present work we have analysed the system of Einstein’s equations sourced by a single 
dissipative fluid in the context of a first-order theory of relativistic dissipation. The generically 
curved FRW metric has been taken as cosmological background. The system has been recast 
in the form of a dimensionless, autonomous system of equations whose equilibrium points 
represent different dynamics of the scale factor. The study of the stability of such critical 
points allowed us to assess the past and future behaviour of the system, characterized unam-
biguously by the deceleration and effective equation of state parameters. The results obtained 
here are in accord with those presented in [27], for instance regarding the attractor behaviour 
of the phantom solution for α < −1/2 (critical point P5), but as well highlight additional 
features: de Sitter-like future attractors exist for different ranges of the parameter α in the non-
positive curvature case (points P0, P2 and P4); for α > 0, a stiff matter-dominated solution is 
found as a past attractor for k � 0 (point P3) and as both a past and a future attractor for k  >  0 
(points Q±

1 ); we notice further that in general the evolution preserves the sign of the entropy 
production, so that positive entropy-producing initial conditions cannot evolve into negative 
entropy-producing states.

It seems natural to ask whether it is possible to obtain an evolution that could interpolate 
between an inflationary epoch due to viscosity up to the later radiation-dominated phase: the 
results presented here indicate that it is not possible to have such a behaviour. Indeed, if we 
require positive and non-divergent entropy production throughout the evolution, there is no 
trajectory connecting de Sitter-like solutions to radiation-dominated ones in an expanding 
dynamics. Instead, under the same physical assumptions on entropic evolution, this model of 

Figure 4.  Trajectories in the parameter space for the system with k  >  0 and ω = 1/3. 
From left: α = 2/3 and α = 3/2. Dots identify sources (red), saddles (blue) and sinks 
(green). The green shaded area is the positive entropy production region. The dashed 
line is the compactified boundary of the system.
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viscous radiation seems to give rise quite easily to the opposite transition, from a radiation-
dominated early epoch towards a late-time accelerated phantom behaviour. In the non-positive 
curvature scenario, this is obtained for α < −1/2 (e.g. trajectories connecting P1 and P5 in 
figure 1) and α > 3/4 (e.g. trajectories connecting P5 and P0 in figure 2), and the rate of 
acceleration is higher the closer α is to such bounds. Considering positive curvature instead 
and requiring only non-recollapsing scenarios, the possibility to have such transition needs 
α < −1/2. These considerations suggest that the present model of viscosity (at least in the sin-
gle-fluid scenario) is not suitable for describing an effective inflationary regime together with 
its exit mechanism towards reheating and subsequent radiation dominance. Regarding instead 
the possibility of describing a late-time acceleration of the Universe—which arises more natu-
rally in the global dynamics—the attractors discussed above have generically ωE < −1, with 
the bound reached only for α → ±∞. On one hand, assuming a sufficiently big value for 
|α|, one could think of including in the analysis an additional inviscid dust component which 
would likely dominate right after the radiation: the expected dynamics could then interpolate 
between radiation, matter and accelerated expansion phases. On the other hand, a very big 
value of |α| that would ensure a late-time exponential expansion in accord with observations 
might instead have serious repercussions at perturbative level. In this regard, an analysis of the 
growth of perturbations in this framework of dissipative processes would certainly be useful 
in assessing the viability of such scenario.
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